Influence of Jamuna Bridge on The Jamuna River Morphology

Minoru KAMOTO International Centre for Water Hazard and Risk Management (ICHARM), under the auspices of UNESCO, Public Works Research Institute (PWRI)

Major floods in Bangladesh

Flood	Flood-affected	As % of total	Rank
year	area (km²)	area of country	
1955	50,500	35.37	6
1974	52,600	36.84	5
1987	57,300	40.13	3
1988	89,970	63.01	2
1998	100,250	67.93	1
2004	55,000	37.27	4

Area of Bangladesh: 147,570 km²

Source: Thomas Hofer & Bruno Messerli, Floods in Bangladesh, 2006

Formation region of meso-scale bed form by Kuroki and Kishi (1984)

Actual values of formation region of meso-scale bed form by Kuroki and Kishi (1984)

$Q, m^3/s$	B,m	H ₀ , m	BI ₀ ^{0.2} /	'H ₀ τ _*	Region*1
65,600.0	13,800	11.19	186	1.98	MRB*2
83,485.0	14,500	11.19	182	2.12	MRB*2
16,750.0	11,000	8.60	192	1.52	MRB*2

*1: Region of bed form, *2: Multiple row bar

JICA, 1976,

Proposed sites	Stability o	f the River	Со	ost of	Estimated t	raffic volume	Evaluation of
			const	ruction			Priority
	Geomor- phology	River – mor- phology	Gran Rive (Cro	d total: r width re TK)	Passenger perso Commodit	Trip: 10,000 ns/year, y flow: 1,000	
					tons	s/year	
			4.2	5.2 - 5.6	Passenger	Commodity	
			km	km	trips	flow	
Bahadurabad	В	A'	457	499	4,324	2,442 (3,655)	В
Gabargaon	A'	А	474	497	4,324	2,442 (3,655)	A'
Sirajganj	А	A'	433	477	4,452	3,506 (4,419)	А
Nagarbari	С	С	471	488	5,056	3,848 (4,666)	B 6

Photo-1: Sirajganj Hard Point revetment on Jamuna River. reinforcement of toe (visible during low flow) with concrete blocks placed during floods at time of structure failure. (2013 Feb.)

Photo-2 : Mollabari Cross-bar on Jamuna River, as seen a) from Jamuna River (looking downstream), and b) from apex of structure, looking upstream. (2013 Feb.)

Enayetpur Spur

Photo 4a) Enayetpur Spur on Jamuna River, 4b) geobag reinforcement around pilings of semi-permeable spur dike.

$$v = \frac{1}{n} I^{\frac{1}{2}} H^{\frac{2}{3}}$$

(1)

$$\frac{B_{1}}{B_{0}} = \left(\frac{H_{0}}{H_{1}}\right)^{\frac{5}{3}} \left(\frac{I_{0}}{I_{1}}\right)^{\frac{1}{2}} \left(\frac{n_{1}}{n_{0}}\right)$$
(2)
$$\frac{q_{b}}{\sqrt{(\sigma/\rho - 1)}gd^{3}} = a\tau_{*}^{m}$$
(3)
$$\frac{B_{1}}{B_{0}} = \left(\frac{H_{0}}{H_{1}}\right)^{m} \left(\frac{I_{0}}{I_{1}}\right)^{m} \left(\frac{d_{0}}{d_{1}}\right)^{\frac{3}{2}-m}$$
(4)

Assuming m=5/2

$$\frac{H_1}{H_0} = \left(\frac{n_1}{n_0}\right)^{\frac{6}{7}} \left(\frac{d_1}{d_0}\right)^{-\frac{6}{35}} \left(\frac{B_1}{B_0}\right)^{-\frac{24}{35}}$$
(5)

$$\frac{H_1}{H_0} = \left(\frac{B_1}{B_0}\right)^{-\frac{24}{35}} = \left(\frac{5022}{16440}\right)^{-\frac{24}{35}} = 2.25$$
(6)

(1). Calculation results showing the bathymetry starting from flat bed at 90 days from initial condition

(2). Calculation results with bathymetry at 152 days after installing the guide bund.

(3). Calculation results with counter measure showing the bathymetry at 156 days after installing series of spur dykes

Timely change of H1/H0 calculating with results of Figure 2

Capital (Pilot) Dredging Plan by Bangladesh Gov.

Model prediction incorporating dredging before execution of dredging work

At the end of monsoon the west channel moves toward the dredging alignment

Simulated Bed Level for each month

interval

Model prediction incorporating dredging before execution of dredging work

After 1in 10 year Flood

After 2nd 1in 10 year Flood

After 2nd 1in 10 year Flood with Maintenance dredging

After 1 in 10 year flood, a shallow channel would be developed through the char

After 2 consecutive 1 in 10 year flood, the shallow channel would become deeper and moves toward Dhaleswari off take After 2 consecutive 1 in 10 year flood, incorporating maintenance dredging the shallow channel would become deeper but left anabranch will not form

Jamuna Bridge in	
Bangaledesh	

Main Bridge	4.8 km
East Guide Bund	3.07 km
West Guide Bund	3.26 km

Completed 1958, Rehabilitation work started 2003 Irrigation water for 8000km2 area 65 gates with rock, width is about 1325m

Thank you for your attention